
An Object-Oriented Design for a
New Generation Mobile Source Emissions Model

Alison Eyth, Kimberly Hanisak, Prashant Pai, Catherine Seppanen
MCNC Environmental Modeling Center

P.O. Box 12889, Research Triangle Park, NC 27709
http://www.emc.mcnc.org/projects/ngm

eyth@emc.mcnc.org

ABSTRACT

An object-oriented design for a new generation mobile source emissions model (NGM) is
described, along with the process used to develop the design. EPA OTAQ plans for the NGM to replace
its current generation of mobile source emissions models (i.e. MOBILE 6, PART, MOBTOX,
NONROAD). The NGM will handle all pollutants emitted from diverse types of vehicles at geographic
scales from individual intersections to the whole nation, and time scales from minutes to years. An
object-oriented design is desirable because it results in maintainable, extensible software and it
facilitates code reuse. The object-oriented design process used for the NGM began with interviews of
users of current mobile source emissions models. The interviews were documented and distilled into use
cases, which were documented in a standard format. A graphical user interface (GUI) for the NGM was
designed, in addition to classes that could be used to implement the GUI. A system architecture and set
of classes was developed to support all of the use cases. Many of the classes used are familiar concepts
to mobile source emissions modelers (e.g. VehicleType, Fuel, Fleet, Pollutant). Key design concepts
include a Data Manager, Project, Aggregator, Importers, and Exporters. A special class called
RunSpecification defines a model run to generate a specific set of emissions [factors]. Default county
and emission rate databases provide input to the emission factor calculation. The potential role of EPA
ORD’s Multimedia Integrated Modeling System (MIMS) in the development of the NGM is examined.

INTRODUCTION

The New Generation Model (NGM) for mobile source emissions is being developed by EPA’s
Office of Transportation and Air Quality (OTAQ). The NGM is intended to include, and improve upon,
the functionality provided by current used emission factor estimation tools such as MOBILE, PART,
MOBTOX, and NONROAD. The NGM will eventually estimate emissions for all mobile sources and all
pollutants, at geographic scales ranging from individual intersections to the whole nation, and temporal
scales from minutes to years. It must also facilitate model validation, uncertainty analysis, and
sensitivity analysis. The NGM software that is developed must be updateable, useable, well
documented, perform well, and work in conjunction with other models as needed. An object-oriented
design process is being used to achieve these goals. For more information on the NGM, see
http://www.epa.gov/otaq/ngm.htm.

The object-oriented design process followed for the NGM had three main parts:

 • conduct user interviews to develop use cases,
 • design a graphical user interface (GUI) that supports the use cases, and
 • design a system architecture that supports the use cases.

Designing a system architecture includes the following: identifying major subsystems to be developed,

considering existing tools that might assist with the implementation, and defining classes that can be
used to develop the system.

OTAQ was interested in understanding whether the NGM could make use of the Multimedia
Integrated Modeling System (MIMS) that is being developed by EPA ORD. The goal of MIMS is to
provide a computing framework that will facilitate the coupling of diverse sets of models, such as those
that would be involved in a multimedia simulation. MIMS will also serve as a replacement for EPA’s
Models-3 computer framework. The use of MIMS during NGM development is discussed.

BODY

Why an Object-Oriented Design for the NGM?

The NGM is being developed using an object-oriented design. Since most current mobile
emission models today do not use an object-oriented design, why use one for the NGM? There are many
reasons:

 • Good object-oriented designs make use of real-world objects that users are familiar with (e.g. Fleet,
Pollutant, Fuel). This brings the system and the users closer together and requires less of a mapping
from the user’s view of the world to the system view.

 • By using inheritance, general concepts can be abstracted out and specialized as needed. Applying
inheritance reduces the volume of the code that must be developed because it allows general pieces of
code to be written once, and specialized code is written as needed for derived classes.

 • The classes of an object-oriented design include both data and methods to operate on that data.
When designed properly, a class is responsible for the state of its own data, and data in other classes is
only modified via well-defined interfaces. This is known as encapsulation. Applying this principle
reduces unwanted side effects in other parts of the system when a specific part of the system is modified,
thereby speeding development by reducing the number of bugs.

 • Applying encapsulation reduces the volume of the code that must be developed because it facilitates
the development of useful subsystems and GUIs that can be written once and reused many times. A
side effect of GUI component reuse is that the user interface appears more consistent.

 • Good object-oriented designs are flexible systems, to which new features can be easily added and
development can proceed incrementally. This is important to the NGM because it will be a complex
system with a broad scope that will be developed incrementally over time.

Since inheritance is such an integral part of object-oriented design that may be new to many
readers, here is an example of how it can be used:

Shape
float area = -1;
abstract calcArea();
float getArea() { if
area <0 calcArea();
return area; }

Circle extends Shape
float radius;
calcArea() { area =
PI*radius*radius; }
float getRadius();
setRadius(float r);

Square extends Shape
float side;
calcArea() { area =
side*side; }
float getSide();
setSide(float s);

Triangle extends Shape
float base, height;
calcArea() { area =
0.5*base*height; }
float getHeight();
setBaseHt(float b, float h)

So, we have a class Shape, with the methods getArea and calcArea, and a floating point data object
called “area”. The classes Circle, Square, and Triangle each inherit from Shape. Inheritance embodies
an “is-a” relationship. So, you can say a Circle “is-a” Shape, a Triangle “is-a” Shape, etc. The derived
classes provide implementations for the calcArea method, which computes the area of the shape using
the appropriate formula and stores it in “area”. The system will automatically decide which version of
calcArea needs to be called at run-time based on the specific class of the Shape that is being operated on.
The classes derived from Shape have access to the getArea() method from their parent class, so that code
only needs to be written once. The derived classes have additional methods and data not stored in the
parent class. For example, the Square class has a data object called “side” that represents the length of
its side, and corresponding methods getSide and setSide.

In summary, applying object-oriented design principles to the NGM should allow for faster
system development, and result in a more usable, extensible system than earlier generations of mobile
source emissions models.

User Interviews

Prior to developing the NGM design, MCNC and EPA OTAQ conducted user interviews with
users of current mobile emissions models from governments (federal, state, and local), universities, and
industry. The users interviewed were: Matt Barth (UC Riverside), Kip Billings (WFRC), Rick Dowling,
Alan Huber (EPA ORD), Rob Ireson, Mark Janssen (LADCO), Mike Keenen (NY DEC), Mohamed
Khan (MD Dept. of Environment), Harold Nudelman (NYC DEP), Alison Pollack (ENVIRON),
Catherine Seppanen (MCNC), Bruce Spear (US DOT), Greg Stella (EPA OAQPS), and many members
of the NGM Team in Ann Arbor, Michigan.

The interviews examined the use of the models with respect to 20 use cases defined by OTAQ.
These use cases included topics such as macroscale inventory development for report generation, policy
evaluation studies, and interaction with transportation models and emission processing systems. Use
cases look at model design and system requirements from a user's standpoint. Each use case is a
narrative that describes the sequence of events that a user goes through to use the system for a specific
task. This provides a natural mapping between the user’s tasks and the system requirements and allows
for a better system design. The information from the user interviews was incorporated into a standard
format for each use case. Notes from the NGM user interviews are available on the web at
http://www.emc.mcnc.org/projects/ngm/users.html.

Each user interview included some basic questions, in addition to topics that were specific to
each use case. Some of the basic questions were:

 • Which mobile source emission models (MSEMs) do you normally use?
(e.g. MOBILE, NONROAD, PART, also travel demand models)

 • How do you typically use these models? (for each use case)
 • How long does the modeling process currently take for each study?
 • How often do you perform the modeling process?
 • What changes that could be made to the MSEMs that would make your work easier?
 • Do you run any models or programs that feed data to or get data from MSEMs?
 • What data do you use as inputs to MSEMs, and for which inputs do you use defaults?
 • What data do you get from the MSEMs and what do you do with it?
 • Are there any analysis tools you use with the MSEMs or standard reports that you generate?

MCNC Derived Use Cases

After the user interviews were completed, the use cases were organized into an object-oriented
structure. This structure allowed use cases to extend (or derive/inherit from) and use (or include) other
use cases. The use cases were grouped into the following categories: Create Emission Factors, Create
Inventory (macro, meso, and microscale), Compare (against another inventory or against a target),
Interact with External Models, Evaluate Policies, Analyze System, and Extend Model. For each use
case, run specifications (that define the system goals and behavior), inputs, outputs, and user and system
courses of action were identified. The MCNC derived use cases are shown in Table 1.

Table 1. MCNC Derived Use Cases

I. Create Emission Factors IV. B. Interact with Models that Provide Input

II. Create Inventory 1. Interact With Growth Models

 A. Create Macroscale Inventory 2. Interact With Transportation Models

 - Generate Trends Report V. Evaluate Policies

 - Generate Greenhouse Gas Emis. Report A. Perform Regulatory Impact Analysis

 - Generate International Reports B. Evaluate New Vehicle/Equipment Tech.

 B. Create Mesoscale Inventory C. Evaluate New Fuels

 C. Create Microscale Inventory D. Evaluate In-Use Emissions Reductions

III. Compare E. Evaluate Travel Time Reductions

 A. Compare Against Another Inventory F. Evaluate Travel Modifications

 - Develop SIPS VI. Analyze System

 B. Compare Against Targets A. Validate Model

 - Analyze Conformity B. Perform Sensitivity Analysis

 - NEPA C. Assess Model Uncertainty

 - Analyze Rate of Progress VII. Extend Model

IV. Interact with External Models A. Extend System

 A. Interact with Models that Drive the NGM B. Adapt for International Use

 1. Interact With Dispersion Models C. Update Data

 2. Interact With Emission Processors D. Create New Objects

The Use Case Diagram in Figure 1 shows how the use cases relate to one another. Each bubble
represents a different use case. Solid lines represent inheritance, where the lower use case inherits from
the higher use case. For example, Macroscale Generation extends Create Inventory so it is a
specialization of the Create Inventory use case. Dotted lines indicate that one use case “uses” another
use case. Thus, the actions of the “using” use case include those of the “used” use case. For example,
Create Inventory uses Create Emission Factors, so emission factors are created during the process of

generating an emissions inventory. In the detailed use case documentation, the fields that appear for
each use case include: Name, Description, Users, Frequency, Extends, Uses, Derived Use Cases, Inputs,
Run Specifications, Outputs, User and System Actions, Issues, Decisions, Interviewees, and Notes. A
full description of the use case process and documentation of all the derived use cases can be found in
NGM Use Cases by MCNC, 2/11/2002.

NGM Graphical User Interface Design

Following the user interviews and development of the use cases, work began on the NGM
Graphical User Interface. Use cases are an important predecessor to the system design because one
measure of the design’s sufficiency is that it supports all of the use cases. A number of GUIs were
designed to satisfy the use cases. The Run Specification GUI shown in Figure 2 grew out of the need to
support setting up the run specifications for the Create Inventory use cases. It contains all the
information needed to create a set of emission factors using the NGM. This includes time periods,
vehicles / equipment and road types to include, geographic regions, pollutants, and emission processes
that factors are needed for, control strategies to apply, input data sets and miscellaneous model controls
to use, and the output directory and file formats. The goal is to have the user define the scope of the run
based on what he / she wants to get out of it, and then the NGM will only calculate what the user
asked for, as efficiently as possible. The data volume of the output can be controlled by letting the user
specify the level of detail or “Breakdown Level”.

In Figure 2, the name of the inventory is shown on the top of the window. The GUI has a menu
bar at the top, and the lower portion is divided into two panes. The left pane shows groups of data that
can be specified for the run. Clicking on one of the groups fills the right pane with widgets that allow
the user to set up data relating to that section. The example in Figure 2 has the Time Periods data group
selected, so information about setting time periods appears on the right-hand pane. The user can specify
multiple time periods for which to create emission factors or inventories. A new time period is specified
by clicking on Add, which causes a small GUI to appear that allows the user to specify a Start and Stop
date (and time, if desired), a Time step and a Time zone. The resulting time period is displayed in the
Selected list. Multiple time periods can be added. Emission factors or inventories will be generated for
each Timestep in each of the time periods in the Selected list. Once the time periods have been selected,
the user can click Next on the bottom of the window or choose another section from the pane on the left.

The NGM Main GUI was designed as a set of menus that provide access to all major components
of the NGM. For example, the Run Specification GUI can be accessed by selecting Create Inventory
from the Actions menu on the main NGM Main GUI.. Some additional NGM GUIs include:

 • Create Multiple Inventories GUI - allows the user to select multiple Run Specifications that define
different inventories and to run the model to create all the inventories in a batch mode;
 • Compare Inventories GUI - the user selects inventories to compare against a base inventory and the
form in which the comparison should be presented (e.g. difference table, graphics, statistics);
 • Compare Against Target GUI - the user selects inventories to compare against a “target”, which is a
set of numeric limits for specific pollutants in specific locations;
 • Project GUI (from MIMS) - a generic interface for creating and editing many types of NGM objects
(see the MIMS section for more details);
 • Data Browser GUI - assists the user in choosing appropriate data sets / input files for a model run.

Screen mock-ups for each of these GUIs are shown in the document NGM Graphical User Interface
Design by MCNC, 2/11/2002.

Figure 1. MCNC Derived Use Case Hierarchy for the NGM

Figure 2. Run Specification GUI

Figure 3. Geographic Regions Pane

Figure 4 MIMS / NGM Project GUI

Figure 3 shows the Geographic Regions pane of the Run Specification. Before selecting the

geographic regions / objects to model, the user must select a scale (i.e. Macroscale, Mesoscale, or
Microscale). Based on this selection, the NGM will limit the geographic (and input data set) options to
those that correspond to the chosen scale. The user must select at least one geographic object to model.
Geographic objects are grouped hierarchically for easier selection. The objects in the Available tree will
be populated according to the selected value in the drop down menu above the tree (e.g. Counties). The
user can select any or all of these available geographic objects and click the arrow to copy them to the
Selected window. The user can create their own customized group by selecting Create Group and
these groups will be saved for later use. The user can Import geographic objects to select from as
needed (for example, importing a specific road network would allow the user to pick actual roads for
modeling). The user can also Search by name to select objects or select them geographically from a
Selectable map. This GUI and an accompanying Selectable Map can be reused to select geographic
objects throughout the NGM.

MIMS and the NGM

An important topic to OTAQ was to understand the potential role that EPA ORD’s MIMS could
play in the NGM development. MCNC’s assessment of this was that using MIMS would speed NGM
development by providing:

 • basic GUI components for building the NGM GUI using on tables of parameters (which can be
simple - like float, integer, or String, or complex - like an air quality model grid),
 • a straightforward method by which custom NGM GUI components and parameters can be added,
 • sensitivity analysis and other tools to run the NGM (and other models) iteratively,
 • a basic implementation of a Project,
 • a growing suite of plotting and visualization tools (e.g. line plots, bar chars, and GIS),
 • a mechanism for defining and executing sets of related models,
 • and an existing code base that supports the above functionality.

For example, NGM development could be sped up by using a slightly modified version of the MIMS
Project GUI and Project classes for the NGM. The new version of the Project GUI is shown in Figure 4.
The objects in the Project are indexed by type. Selecting the object type on the left populates the
window on the right with the available objects of that type. From this GUI, many types of NGM objects
can be created, opened, renamed, duplicated, and deleted. The objects can be imported or exported
for use in other NGM projects using Import and Export on the File menu. Note that all NGM Run
Specification objects reside within some Project, and the Project is used as a source of data when Run
Specifications are populated.

NGM GUIs and Databases

The “Subsystems and GUIs” diagram in Figure 5 shows the relationship of the GUIs to major
NGM data sources and components. At the center of this diagram is the Mobile Emissions Inventory
Generator (MEIG). This is the core of the NGM. It generates the emission factors or inventories that
the user wants according to the parameters defined in Run Specifications. The NGM GUI is accessible
from the MEIG and will provide access to all of the other GUIs in the NGM system via a set of menus.
The dashed arrows represent method calls that cause other GUIs to appear.

Three databases will be used by MEIG to generate emission factors or inventories (in addition to
user supplied input files, which are not shown on this diagram). The first, in the lower left portion of the
diagram, is the Default County Database. It will contain information for each county in the United
States required for macroscale analyses, such as average meteorology, VMT from HPMS, fleet /

registration information, fuel usage information, and inspection and maintenance programs. The
Emission Rate Database will contain emission rates for the emission processes available in the NGM
(e.g. exhaust, evaporative, brake wear, refrigerant leakage, …) . The emission rates are stored by the
operating modes that are appropriate for each process. The single-headed solid arrows from the Default
County and Emission Rate databases show the direction of the data flow. They mean that MEIG reads
the data from these databases, but does not write it. A Mobile Emissions Database Editor has a GUI
that will assist NGM data developers with editing and entering new items in the Default County and
Emission Rate databases. The double-headed arrows between the databases and the Mobile Emissions
Database Editor mean that the editor both reads and writes data in the databases.

The execution of MEIG involves a third “database”, shown in the upper left portion of the
diagram - a MIMS Project. MIMS Projects contain objects such as Run Specifications, Fuels, Vehicle
Types, Road Types, and Control Strategies. These objects are used during the set up and execution of
MEIG runs. Objects in MIMS Projects are stored to disk using a Simple Object Database (currently
based on Java serialization). MIMS Projects can also read and write XML. Three types of GUIs are
available from the MIMS Project. First, the Project GUI shows the types of objects in the Project, and
the instances (i.e. choices) for each object type (see Figure 4). It is shown when a Project is opened.
The Generic Object GUIs provided by MIMS are a default way to view / edit the objects in the project
as sets of parameters and processes. Any object in the Project can be viewed with a Generic Object GUI,
but custom GUIs can also be defined. The third type of GUI accessible from the project, the Run
Specification GUI, is such a custom GUI. It allows the user to define all of the information needed to
run the MEIG, such as time periods, geographic regions, emission processes, pollutants, and more.

When the user selects input data sets from the Run Specification GUI, the conceptual MIMS
Data Browser GUI (shown in the upper right portion of the diagram) will be used. This GUI will allow
the user to query data sets from various data sources known to MIMS by attributes such as time period,
geographic region, data type, and file format. The values for the queriable attributes are stored in a
Metadata Database. This database may or may not be part of the Simple Object Database.

The Aggregated Emission Factor Database is the primary output from MEIG. It contains all
the emission factors generated by a MEIG execution. This data may be analyzed by three other NGM
subsystems shown on the right side of the diagram. First, the Compare Against Target GUI will allow
the user to compare emissions against a numeric target such as a SIP emissions cap. The Compare
Inventories GUI will allow the user to compare multiple emission inventories to a base inventory.
Visualization Tools will allow inventories to be visualized and graphics generated.

NGM Classes

The use cases and GUI design helped to jump-start the process of defining classes to be included
the NGM system design. Some of the basic classes derived from the use cases and GUI design are the
following:

 • VehicleType (e.g. truck, car, tractor, lawnmower)
 • Fuel (e.g. gasoline, diesel, natural gas, LPG, RFG)
 • Fleet - the distribution of vehicles at a specific time and location
 • Pollutant (e.g. HC, NOx, CO2, CFC, benzene)
 • EmissionProcess (e.g. running exhaust, brake wear)
 • ControlStrategy - a description of how emissions should be modified, when, and where
 • Region (e.g. state, county, non attainment area, country)
 • RoadType (e.g. freeway, arterial, local, ramp)

 • RoadSurface (e.g. asphalt, concrete, stone, dirt)
 • Road - a specific road, including coordinates
 • RoadNetwork - a collection of Roads

In addition to the classes above that should represent familiar concepts to the user, new classes
were derived based on the GUI requirements, such as RunSpecification (all the information needed for a
particular model run), RunSpecificationGUI to display the information in the RunSpecification,
GeographicObjectSelectionPanel for selecting sets of geographic objects, etc.

Considering the actual process to be used for calculating emission factors or emissions also
resulted in many classes being added to the design. The process is illustrated in Figure 6, “Process to
Calculate Emission Factors or Emissions”. Pseudo-code that describes this process in more detail, and
complete descriptions of the current state of the NGM class hierarchy and class list are given in the
document NGM Object-Oriented Design by MCNC, 2/11/2002. The calculation is initiated either from
the RunSpecificationGUI, or from the NGM Main program as a batch process. Either way, the execute
method of the RunSpecification class is called. This method will iterate over each time step and location
that the user specified for the run. It begins its work for a particular time and location by gathering the
data it needs from the DataManager, such as the Fleet and RoadNetwork. The DataManager collects the
data needed for a particular time and location needed for the run from the Default County Database,
input files specified by the user, and the Project.

Next, the execute method loops over each emission process in the RunSpecification, The
emission rates for the current emission process are retrieved from the Emission Rate Database. The
rates, Fleet, and other data are passed to the calcEmissionFactors method for the EmissionProcess. This
method calculates the emission factors using a calculation specific to the emission process (e.g. running
exhaust emissions are calculated using a different formula than brake wear emissions). The calculated
factors are then aggregated to the user’s level of interest by the Aggregator, and exported in the user’s
desired formats by appropriate Exporters.

In Figure 6, many of the classes shown are not derived as directly from the use cases, but are
inferred from them and are used to make the system work and to make it modular. The general principle
of placing a class in between the core of the system and any data sources or sinks is shown in the DB
Mgr classes, Importers, Exporters, and at a higher level, in the DataManager. The DB Mgr classes
handle the details of actually getting data into and out of databases. Subclasses of the Importer class are
used to insulate the internals of the NGM from the various file formats and data contents of files that are
inputs to the NGM (e.g. different types of transportation models). Subclasses of the Exporter class will
be able to take data stored in the Emission Factor DB and output it in various formats.

The DataManager is a bit smarter than the Importers and DB Mgrs, it knows how to make use of
all of its data sources in order to return key pieces of data to the rest of the system for specific times and
places. Thus, the DataManager insulates the rest of the system from having to worry about the details of
how to gather the data needed for the calculations. Another inferred class is the Aggregator, which
implements the system requirement that users want output data at different levels of resolution by
providing the ability to aggregate over vehicle type, age, model year, fuel type, emission process, road
type, SCC, and other categories.

CONCLUSIONS

An object-oriented design can benefit the NGM. It will provide a flexible framework capable of
satisfying the many design goals of the NGM. Some of the key design concepts applied are:

 • use objects familiar to the users wherever possible,
 • insulate the core of the model from the peculiarities of file formats and database accesses

using the concepts of the Data Manager, Importers, Database Managers, and Exporters;
 • use a Project to contain objects used in model runs
 • capture the areas of user interest for a particular model run in the RunSpecification class,

and only perform calculations necessary to meet those user goals
 • use inheritance (e.g. for EmissionProcess classes) to exploit the commonalities but account

for the differences in the factors calculated for each process
 • create an Aggregator to aggregate the emission factors to the level the user is interested in.

It was shown that the use of MIMS could speed the NGM development process. The proposed design
was found to satisfy the use cases. The mechanisms for supporting each use case are shown in Table 2.

BIBLIOGRAPHY

Eyth, A.M., K. Hanisak, P.Pai, C. Seppanen, “NGM Use Cases by MCNC – 2/11/2002", Prepared for
the U.S. Environmental Protection Agency (EPA) Office of Transportation and Air Quality by the
MCNC Environmental Modeling Center, 2002.

Eyth, A.M., K. Hanisak, P. Pai, C. Seppanen, “NGM Graphical User Interface by MCNC – 2/11/2002",
Prepared for the U.S. EPA Office of Transportation and Air Quality by the MCNC Environmental
Modeling Center, 2002.

Eyth, A.M., P. Pai, K. Hanisak, C. Seppanen, “NGM Object-Oriented Design by MCNC – 2/11/2002",
Prepared for the U.S. EPA Office of Transportation and Air Quality by the MCNC Environmental
Modeling Center, 2002.

KEY WORDS

Mobile Source
Emission Model
New Generation Model
Object-oriented Software

ACKNOWLEDGMENTS

This work was funded by the US Environmental Protection Agency’s Office of Transportation and Air
Quality under GSA Task Order ID 4TAG68012752.

DISCLAIMER

This design is still under review by EPA and should not be considered a final design for the
New Generation Mobile Source Emissions Model.

Table 2. How the Design Satisfies the Use Cases

Use Case Design Concept(s)

Create Emission Factors RunSpecification defines factors to create. See also
DataManager, RunSpecification.execute(),
EmissionProcess.calcEmissionFactors()

Create Inventory RunSpecification defines what inventory to create.
Execution triggered from GUI or batch. Aggregator
converts from emission factor to emission inventory.

Create Macroscale Inventory, Trends,
Greenhouse gas, International Reprtg

See Create Inventory case; Exporters output data in formats
needed for reports, and use Regions for geographic objects.

Create Mesoscale Inventory See Create Inventory; Importers to get data from
transportation models, and Roads for geographic objects

Create Microscale Inventory See Create Inventory; Importers to get data from trans.
models; use Roads and Intersections for geographic objects

Compare Inventories, SIP Compare Inventories GUI

Compare Against Target, Conformity,
NEPA, Rate of Progress

Compare Against Target GUI

Interact with Models that Drive the
NGM to get its output

Java API allows other Java models to drive NGM, others
use file-based (e.g. XML) version of RunSpec. and a cmd
line interface. Exporters write data in other formats

Interact with Transportation Models Importers read data output by various transportation models
into the NGM.

Interact with Growth Models Data Manager calls growth modules appropriately for years
in the future. Importers read data from other models.

Extend System Object-oriented design makes this straightforward

Update Data Mobile Emissions Database Editor

Create New Objects MIMS Project to store NGM Objects; implement Parameter
Specifiers and use Parameters for NGM Objects

Adapt for International Use See Extend System, Update Data, Create New Objects

Evaluate Policies Control Strategies and Strategy Rules. See also Create
Inventory, Compare Inventories, Compare Against Target,
Create New Objects, and Update Data

Sensitivity Analysis MIMS iteration and sensitivity analysis tools.

Uncertainty Analysis Include standard deviation in emission rate database; MIMS
uncertainty analysis tools.

Model Validation Piecewise due to object-oriented design. Also use Compare
Inventories and Compare Against Target GUIs.

Figure 5. NGM Subsystems and GUIs

Figure 6.

